Главная - Публикации и новости - Новая технология переработки зерна гречихи в крупу

Новая технология переработки зерна гречихи в крупу

Каминский В. Д. , заслуженный изобретатель Украины, д.т.н., профессор ОГСХИ
Бабич М. Б. , к.т.н., генеральный директор НПО «АГРО-СИМО-МАШБУД»

 
     Эффективность использования зерновых ресурсов, качество и выход готовой продукции зависит от методов ведения технологического процесса производства крупы, совершенства конструкций технологического оборудования и, в значительной мере, определяется содержанием сорной примеси и технологическими свойствами зерна. Это особенно актуально при переработке гречихи в крупу. Структурно-механические свойства являются одними из основных, так как они связывают структурные особенности зерна гречихи с его поведением при механическом воздействии (в процессе шелушения).
     Технологические свойства зерна гречихи могут быть улучшены различными способами. Одним из наиболее экономически оправданных является гидротермическая обработка (ГТО) , которая включает операции пропаривания, сушки и охлаждения и заключается в одновременном воздействии на зерно теплоты и влаги путем обработки его насыщенным водяным паром [1-2]. Воздействие влаги и теплоты на зерно вызывает преобразования физико-химических и биохимических свойств, которые тесно связаны с технологическими особенностями зерна гречихи, что способствует повышению прочности ядра и снижению его дробления в процессе шелушения.
     В настоящее время при переработке зерна гречихи используют «сухие» способы очистки зерна (сепараторы, триеры, камнеотборочные машины, концентраторы и др.), которые не обеспечивают эффективное выделение трудноотделимых примесей (дикой редьки, испорченных ядер, овса и овсюга, ячменя, пшеницы, семян подсолнечника и сорных трав, пыли и микроорганизмов и т.д.). Кроме всего, при этом до 5% наиболее ценного и крупного зерна попадает в отходы [3].
   В существующей технологии (согласно «Правил...») для пропаривания зерна используют пропариватели А9-БПБ, а для сушки пропаренного зерна - паровые сушилки ВС-10-49 М. Необходимые для охлаждения зерна после сушки охладительные колонки промышленностью не выпускаются. К недостаткам вышеуказанного оборудования следует отнести неравномерность пропаривания и сушки зерна, низкую надежность работы пробковых затворов пропаривателей, что приводит к утечке пара в производственное помещение, в устройство над пропаривателем и в надсушильный бункер. Как показывают теплотехнические расчеты до 53% теплоты из пропаривателя А9-БПБ выбрасывается с отработавшей пароконденсатной смесью в атмосферу и не используется на технологические цели, что загрязняет производственную среду, а образуемая ударная шумовая волна отрицательно воздействует на жизнедеятельность человека.
     Сушилки ВС-10-49 М с кондуктивным способом подвода теплоты к зерну являются одним из наиболее «узких» мест в работе крупоцеха, что не позволяет не только повысить скорость сушки, но и не обеспечивает равномерность влагосъема по объему зерновой массы, при этом из сушилки выбрасывается в атмосферу отработавший теплый воздух с высоким энергопотенциалом. Для охлаждения зерна используют охладительные колонки, конструкции которых на каждом предприятии различны и малоэффективны, так как их изготавливают на каждом крупоцехе самостоятельно. Сложность использования охладительных колонок заключается в необходимости дополнительного подъема зерна для подачи его в них после сушки.
    С целью устранения существующих недостатков нами разработана новая технология переработки зерна гречихи в крупу, которая предусматривает гидросепарирование зерна на моечной машине специальной конструкции [4-8] и утилизацию отработавшей теплоты пропаривателя и паровых сушилок на технологические цели. Новая технологическая схема включает операции: гидросепарирование (увлажнение), отжим влаги из отходов, сушку отходов, подсушивание и предварительный подогрев зерна, пропаривание при мягких режимах, сушку зерна комбинированным кондуктивно-конвективным способом.
    Для реализации новой технологии нами разработаны новые виды технологического оборудования: пропариватель типа ПЗ-1, паровая вертикальная сушилка, в нижней секции которой смонтирована специальной конструкции охладительная колонка, моечная машина КВД (гидросепаратор).
   Новая технологическая схема и новые виды технологического оборудования внедрены на Трикратском комбинате хлебопродуктов (Николаевская обл.) в 1999 г., производительность крупоцеха 50 т/сут. зерна. Особенностью является использование компьютера для управления работой крупоцеха, что позволяет производить набор необходимых маршрутов, выбор режимов, пуск и установку технологического оборудования и транспортных механизмов с системой блокировки их от завалов. Эксплуатация крупоцеха показывает более высокий технический уровень работы технологического оборудования и технологии переработки зерна гречихи, повышена эффективность работы технологического оборудования и существенно улучшены показатели качества и выход готовой продукции сравнительно с существующей технологией в промышленности.
    Гидросепарирование на моечной машине показывает высокую эффективность выделения сорной примеси, которую используют для доочистки зерновой массы на заключительной стадии ее подготовки к переработке. В процессе гидросепарирования с эффективностью до 100% выделяются семена подсолнечника, до 65% - испорченные ядра, до 96% - дикой редьки, до 97% - органическая примесь и рудяк, 24 - 46% - овес, овсюг, пшеница, рожь и ячмень, практически полностью выделяется пыль и до 95% происходит смыв микроорганизмов с поверхности зерна и ряд других примесей. Расход воды при гидросепарировании в предлагаемой моечной машине специальной конструкции на 1 т зерновой массы незначителен и составляет 0.22 - 0.30 м3 (сравнительно с известными конструкциями моечных машин, где расход воды на 1 тонну составляет 1.1 - 1.3 м3). Использование специальной конструкции тонкослойного отстойника позволяет производить очистку отработавшей воды и при необходимости ее рециркуляцию.
    Наряду с эффективной очисткой зерновой массы от сорной примеси гидросепарирование играет важную роль при насыщение зерна влагой, что в сочетании с последующими операциями подсушивания и предварительного подогрева не только стабилизирует, но и интенсифицирует процесс пропаривания, снижает на 21 - 28% расход пара за счет уменьшения жесткости параметров пропаривания. К этому необходимо добавить, что введение новых вышеперечисленных операций повышает возможности управления изменением цвета ядра, создаются условия для достижения любого оттенка и цвета крупы, пользующейся спросом у потребителя. Сочетание операций подсушивания, предварительного подогрева, пропаривания и сушки с учетом воздействия на зерно рабочих органов центрифугальной колонки моечной машины способствуют улучшению технологических свойств гречихи. Оценка коэффициентов шелушения первой фракции показала, что при их величине 62 - 66% количество дробленого ядра не превышает 1%, при коэффициентах шелушения второй фракции 68 - 71% количество дробленого ядра составляет 1.4 - 1.8%.
   Представленные показатели указывают на резерв повышения коэффициентов шелушения, согласно требованиям «Правил...» по количеству дробленого ядра. На коэффициенты шелушения гречихи оказывают влияние также новые конструкции разработанных нами вальцедековых станков типа СГР-600 и СГР-400 , где соответственно длина рабочих валков составляет 600 и 400 мм. На Трикратском крупоцехе на 1 и 2 фракциях установлены вальцедековые станки СГР-600, а на 3 и 4 фракциях СГР-400. Анализ перерабатываемого зерна показывает, что нулевая фракция составляет 10 - 29%, первая фракция 44 - 56%, вторая фракция - 18 - 28%, третья фракция - 8 - 11% и т.д. Высокие коэффициенты шелушения и равномерная нагрузка вальцедековых станков позволяет снизить затраты электроэнергии на 16 - 21% не только на их привод, но и на шелушение зерна с уменьшением его заворотов на повторное шелушение. Несмотря на короткую схему калибровки зерна, построение технологической схемы позволяет достигнуть производства высокого качества ядрицы первого сорта, с содержанием необруша 0.08 - 0.21% при том, что цех работает меньше месяца и еще не притерты сита и оборудование, сорная примесь практически отсутствует, а количество колотого ядра не более 1.0 - 1.6%, при нормированном общем выходе крупы. В отличие от вырабатываемой промышленностью ядрицы по известной технологии, при использовании новой - важное значение имеет отсутствие в ядрице пыли и мучели, микроорганизмов, что соответствует санитарным нормам и позволяет употреблять крупу в пищу без промывки и потери сухих веществ. Каша из такой крупы имеет более ярко выраженный характерный для гречневой крупы вкус и запах, консистенция ее рассыпчатая.
Литература
Каминский В. Д., Остапчук Н. В. Технология гидротермической обработки зерна гречихи с использованием вторичного тепла — М.: ЦНИИТЭИ Минхлебопродуктов, 1988, с.13 — (ЭИ.сер.: Мукомол.-крупян. пром-ть. Вып.1)
Егоров Г. А. Гидротермическая обработка зерна — М.: Колос, 1968, с.97
Фролова М. В. Исследование и разработка способов очистки зерна гречихи от трудноотделимых примесей Авто-реферат диссертации к.т.н. — М.: 1970, с.23
Камінський В. Д. Установка для мокрої обробки та пропарювання зерна круп"яних культур Патент України № 177, 1992 р.
Камінський В. Д. Мийна машина Камінського В. Д. Патент України № 2505, 1994 р.
Камінський В. Д. Спосіб підготовки зерна круп"яних культур до переробки в крупу Патент України № 1710, 1994 р.
Камінський В. Д. Способ теплової обробки зерна круп"яних культур в паровій сушарці безперервної дії Патент України № 16548, 1997 р.
Каминський В. Д. Способ пропаривания зерна В.Д. Каминского Патент Российской Федерации № 2021853


Источник: журнал «Хранение и переработка зерна» № 5, 1999 г.